
Distributed File Systems and
Network File Systems

ECE 469, April 24

Aravind Machiry

1

Distributed File Systems

Client

Client

Client

Client

Server

Network

Examples: NFS, AFS

2

Client/Server Model
● Service – software entity running on one or more machines and

providing a particular type of function to a priori unknown clients

● Server – which runs the service software to provide the service

● Client – process that can invoke a service using a set of operations
that forms its client interface

● Traditional DFS uses client/server model

3

● You can login to any instructional machine on campus, your home dir is
always there!

● but sometimes it is very slow…

Distributed File Systems (DFS)

4

DFS
● Definition: a distributed implementation of the classical time-sharing

model of a file system, where multiple users share files and storage
resources

● Many DFS have been proposed and developed

5

Motivation

● Why are distributed file systems useful?

● Access from multiple clients

● Same user on different machines can access same files

● Simplifies sharing

● Different users on different machines can read/write to same files

● Simplifies administration

● One shared server to maintain (and backup)

● Improve reliability

● Add RAID storage to server

6

Challenges
● Transparent access

● User sees single, global file system regardless of location

● Scalable performance

● Performance does not degrade as more clients are added

● Fault Tolerance

● Client and server identify and respond appropriately when other crashes

● Consistency

● See same directory and file contents on different clients at same time

● Security

● Secure communication and user authentication

● Tension across these goals

● Example: Caching helps performance, but hurts consistency

7

NFS (Network File System)
● First commercially successful distributed file system:

● Developed in 1984 by Sun Microsystems for their diskless workstations

● Designed for robustness and “adequate performance”

● Multiple versions (v2, v3, v4)

● Widely used today

8

NFS Overview
● Remote Procedure Calls (RPC) for communication between client and server

● Client Implementation

● Provides transparent access to NFS file system
● UNIX contains Virtual File system layer (VFS)
● Vnode: interface for procedures on an individual file

● Translates vnode operations to NFS RPCs

● Server Implementation

● Stateless: Must not have anything only in memory

● Implication: All modified data written to stable storage before return control to
client
● Servers often add NVRAM to improve performance

9

NFS Overview

File Server

Application

Kernel

System calls:
open(“foo.txt”, O_RD);
read(fd,..)

Remote Procedure Calls:
open(FH, O_RD);
read(FH,..)

10

NFS Design Objectives
● Machine and Operating System Independence

● Could be implemented on low-end machines of the mid-80’s

● Transparent Access

● Remote files should be accessed in exactly the same way as local files

● Fast Crash Recovery

● Major reason behind stateless design

● “Reasonable” performance

● Robustness and preservation of UNIX semantics were much more
important

11

Implementation of Transparency

● “All computer science problems can be solved with an extra
level of indirection”

 -- David Wheeler

● What were the earlier manifestations of this in this class?

12

Client Side

UNIX system calls

VFS

Other FS NFS UNIX FS

User interface is
unchanged

RPC/XDR disk

LAN

Common interface

13

NFS Key Ideas
● NFS key idea #1: Stateless server

● Server not required to remember anything (in memory)
● Which clients are connected, which files are open, …

● Implication: All client requests have all the information to complete op
● Example: Client specifies offset in file to write to

● Why is this important for fast crash recovery?

● NFS Key idea #2: Idempotent server operations
● Operation can be repeated with same result (no side effects)
● Example: idempotent: a=b+1; Not idempotent: a=a+1;
● Why is this important for crash recovery?

14

Consequence of Statelessness

● read and write calls must specify offset

● Server does not keep track of current position in the file

● But user will still use conventional UNIX APIs

● Client must maintain a local offset to be used for read/write.

15

Advantages of Statelessness

● Crash recovery is very easy:

● When a server crashes, client just resends request until it gets an
answer from the rebooted server

● Client cannot tell difference between a server that has crashed and
recovered and a slow server

● Server state does not grow with more clients

● Simplifies the protocol

● Client can always repeat any request

16

Basic NFS Protocol
● Operations at NFS layer (applications do not execute these)

● lookup(dirfh, name) returns (fh, attributes)
● Use mount protocol for root directory

● create(dirfh, name, attr) returns (newfh, attr)
● remove(dirfh, name) returns (status)
● read(fh, offset, count) returns (attr, data)
● write(fh, offset, count, data) returns attr
● gettattr(fh) returns attr

● What’s missing here?
● close. Why we do not need it?

17

Remote Lookup

● Returns a file handle instead of a file desc.

● File handle specifies unique location of file

● lookup(dirfh, name) returns (fh, attr)

● Returns file handle fh and attributes of named file in directory dirfh

● Fails if client has no right to access directory dirfh

18

Remote Lookup

● To lookup “/usr/joe/6360/list.txt”

lookup(rootfh, “usr”) returns (fh0, attr)
lookup(fh0, “joe”) returns (fh1, attr)
lookup(fh1, “6360”) returns (fh2, attr)
lookup(fh2, “list.txt”) returns (fh, attr)

19

Mapping UNIX System calls to NFS
Operations
● Unix system call: fd = open(“/dir/foo”)

● Traverse pathname to get filehandle for foo
● dir_fh = lookup(root_dir_fh, “dir”);
● fh = lookup(dir_fh, “foo”);

● Record mapping from fd file descriptor to fh NFS filehandle
● Set initial file offset to 0 for fd
● Return fd file descriptor

20

Mapping UNIX System calls to NFS
Operations
● Unix system call: read(fd,buffer,bytes)

● Get current file offset for fd
● Map fd to fh NFS filehandle
● Call data = read(fh, offset, bytes) and copy data into buffer
● Increment file offset by bytes

21

Mapping UNIX System calls to NFS
Operations
● Unix system call: close(fd)

● Free resources associated with fd
● No need to tell server: stateless server

22

Identifying Files in NFS
● Can we still use inode?

● NFS use File handles

● File handle consists of
● Filesystem id identifying disk partition
● i-node number identifying file within partition
● i-node generation number changed every time

i-node is reused to store a new file

Filesystem id i-node number i-node generation number

23

Why not only i-node number?

12, 4367

Server

Client A

12, 4367

foo.txt

foo.txt

foo.txt

24

Why not only i-node number?

12, 4367

Server

Client A

12, 4367 12, 4367

Delete

foo.txt

foo.txt

Client B

foo.txt

25

Why not only i-node number?

12, 4367

Server

Client A

12, 4367

New File

bar.txt

bar.txt

Client B

foo.txt

26

Why not only i-node number?

12, 4367

Server

Client A

12, 4367

bar.txt

Client B

foo.txt

Read Client thinks it is reading foo.txt but in
reality it would be reading bar.txt

27

Performance

● Evey read and write requires a network access
● How can we avoid this frequent network access?

28

Client-Side Caching

● Caching needed to improve performance

● Reads: Check local cache before going to server

● Writes: Only periodically write-back data to server

● Why avoid contacting server

● Avoid slow communication over network

● Server becomes scalability bottleneck with more clients

● Two types of client caches

● data blocks

● attributes (metadata)

29

Cache Consistency

● Problem: Consistency across multiple copies (server and multiple clients)

● How to keep data consistent between client and server?

● If file is changed on server, will client see update?

● Determining factor: Read policy on clients

● How to keep data consistent across clients?

● If write file on client A and read on client B, will B see update?

● Determining factor: Write and read policy on clients

30

Cache Consistency Problem

Server

x’ xx’’

A B

Inconsistent updates

31

NFS Consistency: Reads
● Reads: How does client keep current with server state?

● Attribute cache: Used to determine when file changes
● File open: Client checks server to see if attributes have changed

▪ If haven’t checked in past T seconds (configurable, T=3)
● Discard entries every N seconds (configurable, N=60)

● Data cache
● Discard all blocks of file if attributes of the file has been modified

32

● Eg: Client cache has file A’s attributes and blocks 1, 2, 3
● Client opens A:
● Client reads block 1 => ?
● Client waits 70 seconds
● Client reads block 2 => ?

NFS Consistency: Reads

33

● Eg: Client cache has file A’s attributes and blocks 1, 2, 3
● Client opens A:
● Client reads block 1 => cache
● Client waits 70 seconds
● Client reads block 2 => cache
● Block 3 is changed on server

NFS Consistency: Reads

34

● Eg: Client cache has file A’s attributes and blocks 1, 2, 3
● Client opens A:
● Client reads block 1 => cache
● Client waits 70 seconds
● Client reads block 2 => cache
● Block 3 is changed on server
● Client reads block 3 => ?

NFS Consistency: Reads

35

● Eg: Client cache has file A’s attributes and blocks 1, 2, 3
● Client opens A:
● Client reads block 1 => cache
● Client waits 70 seconds
● Client reads block 2 => cache
● Block 3 is changed on server
● Client reads block 3 => cache, get old value
● Client reads block 4 => ?

NFS Consistency: Reads

36

● Eg: Client cache has file A’s attributes and blocks 1, 2, 3
● Client opens A:
● Client reads block 1 => cache
● Client waits 70 seconds
● Client reads block 2 => cache
● Block 3 is changed on server
● Client reads block 3 => cache, get old value
● Client reads block 4 => fetch from server
● Client waits 70 seconds Attr changed, all Data blocks are discarded.

NFS Consistency: Reads

37

● Eg: Client cache has file A’s attributes and blocks 1, 2, 3
● Client opens A:
● Client reads block 1 => cache
● Client waits 70 seconds
● Client reads block 2 => cache
● Block 3 is changed on server
● Client reads block 3 => cache, get old value
● Client reads block 4 => fetch from server
● Client waits 70 seconds
● Client reads block 3 => ?
● Client reads block 1 => ?

NFS Consistency: Reads

38

NFS Consistency: Writes

● Writes: How does client update server?
● Files

● Write-back from client cache to server every 30 seconds
● Also, Flush (write all dirty data) on close() (AKA flush-on-close)

● Directories
● Synchronously write to server (write through)

39

NFS Consistency: Writes

● Example: Client X and Y have file A (blocks 1,2,3) cached
● Clients X and Y open file A
● Client X writes to blocks 1 and 2

40

NFS Consistency: Writes

● Example: Client X and Y have file A (blocks 1,2,3) cached
● Clients X and Y open file A
● Client X writes to blocks 1 and 2
● Client Y reads block 1 => cache

41

NFS Consistency: Writes

● Example: Client X and Y have file A (blocks 1,2,3) cached
● Clients X and Y open file A
● Client X writes to blocks 1 and 2
● Client Y reads block 1 => cache
● 30 seconds later... Data blocks from X are pushed to the server.

42

NFS Consistency: Writes

● Example: Client X and Y have file A (blocks 1,2,3) cached
● Clients X and Y open file A
● Client X writes to blocks 1 and 2
● Client Y reads block 1 => cache
● 30 seconds later...
● Client Y reads block 2 => cache, get old value

43

NFS Consistency: Writes

● Example: Client X and Y have file A (blocks 1,2,3) cached
● Clients X and Y open file A
● Client X writes to blocks 1 and 2
● Client Y reads block 1 => cache
● 30 seconds later...
● Client Y reads block 2 => cache, get old value
● 40 seconds later... Attr changed, all Data blocks are discarded on Y.

44

NFS Consistency: Writes

● Example: Client X and Y have file A (blocks 1,2,3) cached
● Clients X and Y open file A
● Client X writes to blocks 1 and 2
● Client Y reads block 1 => cache
● 30 seconds later...
● Client Y reads block 2 => cache, get old value
● 40 seconds later...
● Client Y reads block 1 => server

45

Conclusions
● Distributed file systems

● Important for data sharing
● Challenges: Fault tolerance, scalable performance, and consistency

● NFS: Popular distributed file system
● Key features:

● Stateless server, idempotent operations: Simplifies fault tolerance
● Crashed server appears as slow server to clients

● Client caches needed for scalable performance
● Rules for invalidating cache entries and flushing data to server are not

straight-forward
● Data consistency very hard to reason about

