Distributed File Systems and
Network File Systems

ECE 469, April 24
Aravind Machiry

Distributed File Systems S

Examples: NFS, AFS

Client/Server Model

® Service — software entity running on one or more machines and
providing a particular type of function to a priori unknown clients

e Server — which runs the service software to provide the service

e Client — process that can invoke a service using a set of operations
that forms its client interface

e Traditional DFS uses client/server model

Distributed File Systems (DFS)

® You can login to any instructional machine on campus, your home dir is
always there!

® but sometimes itis very slow...

DFS

. Definition: a distributed implementation of the classical time-sharing
model of a file system, where multiple users share files and storage
resources

« Many DFS have been proposed and developed

Motivation

e Why are distributed file systems useful?
Access from multiple clients
Same user on different machines can access same files
Simplifies sharing
Different users on different machines can read/write to same files
Simplifies administration
One shared server to maintain (and backup)
Improve reliability
Add RAID storage to server

Challenges

® Transparent access
e User sees single, global file system regardless of location
® Scalable performance
e Performance does not degrade as more clients are added
e Fault Tolerance
e Client and server identify and respond appropriately when other crashes

e Consistency

e See same directory and file contents on different clients at same time
® Security

e Secure communication and user authentication
® Tension across these goals

e Example: Caching helps performance, but hurts consistency

NFS (Network File System)

® First commercially successful distributed file system:

Developed in 1984 by Sun Microsystems for their diskless workstations
Designed for robustness and “adequate performance”

Multiple versions (v2, v3, v4)

Widely used today

NFS Overview

e Remote Procedure Calls (RPC) for communication between client and server

e Client Implementation
Provides transparent access to NFS file system
UNIX contains Virtual File system layer (VFS)
Vnode: interface for procedures on an individual file
Translates vnode operations to NFS RPCs

e Server Implementation
Stateless: Must not have anything only in memory

Implication: All modified data written to stable storage before return control to
client

Servers often add NVRAM to improve performance

NFS Overview

Application

System calls:

read(fd,..)

open(“foo.txt”, O_RD);

Kernel

Remote Procedure Calls:
open(FH, O_RD);
read(FH,..)

File Server

NFS Design Objectives

® Machine and Operating System Independence
e Could be implemented on low-end machines of the mid-80’s

—Jpe Transparent Access
e Remote files should be accessed in exactly the same way as local files

e Fast Crash Recovery
e Major reason behind stateless design

® “Reasonable” performance

® Robustness and preservation of UNIX semantics were much more
important

10

Implementation of Transparency

e “All computer science problems can be solved with an extra
level of indirection”

-- David Wheeler

® What were the earlier manifestations of this in this class?

11

Client Side

User interface is

unchanged
Common interfi:*‘

UNIX system calls

Other FS

LAN <

disk

12

NFS Key Ideas

® NFS key idea #1: Stateless server
e Server not required to remember anything (in memory)
Which clients are connected, which files are open, ...
e Implication: All client requests have all the information to complete op
Example: Client specifies offset in file to write to
e Why is this important for fast crash recovery?

® NFS Key idea #2: Idempotent server operations
e Operation can be repeated with same result (no side effects)
e Example: idempotent: a=b+1; Not idempotent: a=a+1;

e Why is this important for crash recovery?
13

Consequence of Statelessness

e read and write calls must specify offset

e Server does not keep track of current position in the file

e But user will still use conventional UNIX APls

e Client must maintain a local offset to be used for read/write.

14

Advantages of Statelessness

e Crash recovery is very easy:

When a server crashes, client just resends request until it gets an
answer from the rebooted server

Client cannot tell difference between a server that has crashed and
recovered and a slow server

e Server state does not grow with more clients

e Simplifies the protocol

Client can always repeat any request
15

Basic NFS Protocol

e Operations at NFS layer (applications do not execute these)

lookup(dirfh, name) returns (fh, attributes)
Use mount protocol for root directory

create(dirfh, name, attr) returns (newfh, attr)

remove(dirfh, name) returns (status)

read(fh, offset, count) returns (attr, data)

write(fh, offset, count, data) returns attr

gettattr(fh) returns attr

What’s missing here?
close. Why we do not need it?

16

Remote Lookup

e Returns a file handle instead of a file desc.
File handle specifies unique location of file

e lookup(dirfh, name) returns (fh, attr)
Returns file handle fh and attributes of named file in directory dirfh
Fails if client has no right to access directory dirfh

17

Remote Lookup

To lookup “/usr/joe/6360/list.txt”

lookup(rootfh, “usr”) returns (fhO, attr)
lookup(fh0, “joe”) returns (fh1, attr)
lookup(fhl, “6360”) returns (fh2, attr)
lookup(fh2, “list.txt”) returns (fh, attr)

18

Mapping UNIX System calls to NFS
Operations

e Unix system call: fd = open(“/dir/foo”)
e Traverse pathname to get filehandle for foo
dir_fh = lookup(root_dir_fh, “dir”);
fh = lookup(dir_fh, “foo”);
e Record mapping from fd file descriptor to th NFS filehandle
e Setinitial file offset to O for fd
e Return fd file descriptor

19

Mapping UNIX System calls to NFS
Operations

e Unix system call: read(fd,buffer,bytes)

Get current file offset for fd

Map fd to fh NFS filehandle

Call data = read(fh, offset, bytes) and copy data into buffer
Increment file offset by bytes

20

Mapping UNIX System calls to NFS

Operations

e Unix system call: close(fd)

Free resources associated with fd
No need to tell server: stateless server

21

Identifying Files in NFS

® Can we still use inode?

® NFS use File handles

e File handle consists of
Filesystem id identifying disk partition
i-node number identifying file within partition

i-node generation number changed every time
i-node is reused to store a new file

Filesystem id I-node number I-node generation number

Why not only i-node number?

Client A

Server

foo.txt
12, 4367

foo.txt
12, 4367

23

Why not only i-node number?

Client A

Server

foo.txt
12, 4367

foo.txt
12, 4367

Delete foo.txt

Client B

12, 4367

24

Why not only i-node number?

Client A

Server

bar.txt
12, 4367

foo.txt
12, 4367

New File ..

Client B

25

Why not only i-node number?

Server

bar.txt

12, 4367

Read Client thinks it is reading foo.txt but in
reality it would be reading bar.txt

Client A Client B

12, 4367

26

Performance

e Evey read and write requires a network access
e How can we avoid this frequent network access?

27

Client-Side Caching

e Caching needed to improve performance
Reads: Check local cache before going to server
Writes: Only periodically write-back data to server
Why avoid contacting server
Avoid slow communication over network
Server becomes scalability bottleneck with more clients
e Two types of client caches
data blocks
attributes (metadata)

28

Cache Consistency

® Problem: Consistency across multiple copies (server and multiple clients)
How to keep data consistent between client and server?
If file is changed on server, will client see update?
Determining factor: Read policy on clients

How to keep data consistent across clients?
If write file on client A and read on client B, will B see update?
Determining factor: Write and read policy on clients

29

Cache Consistency Problem

| | | Server |

30

NFS Consistency: Reads

® Reads: How does client keep current with server state?
Attribute cache: Used to determine when file changes
File open: Client checks server to see if attributes have changed
= |f haven’t checked in past T seconds (configurable, T=3)
Discard entries every N seconds (configurable, N=60)
Data cache
Discard all blocks of file if attributes of the file has been modified

31

NFS Consistency: Reads
Eg: Client cache has file A’s attributes and blocks 1, 2, 3

Client opens A:

Client reads block 1 =>7?
Client waits 70 seconds
Client reads block 2 =>?

32

NFS Consistency: Reads
Eg: Client cache has file A’s attributes and blocks 1, 2, 3

o Client opens A:

o Client reads block 1 => cache
» Client waits 70 seconds

o Client reads block 2 => cache
e Block 3 is changed on server

33

NFS Consistency: Reads
Eg: Client cache has file A’s attributes and blocks 1, 2, 3

o Client opens A:

o Client reads block 1 => cache
» Client waits 70 seconds

o Client reads block 2 => cache
e Block 3 is changed on server
o Client reads block 3 =>7?

34

NFS Consistency: Reads
e Eg: Client cache has file A’s attributes and blocks 1, 2, 3

o Client opens A:

o Client reads block 1 => cache

» Client waits 70 seconds

o Client reads block 2 => cache

e Block 3 is changed on server

» Client reads block 3 => cache, get old value
o Client reads block 4 =>?

35

NFS Consistency: Reads
Eg: Client cache has file A’s attributes and blocks 1, 2, 3

o Client opens A:

o Client reads block 1 => cache

o Client waits 70 seconds

o Client reads block 2 => cache

e Block 3 is changed on server

» Client reads block 3 => cache, get old value
o Client reads block 4 => fetch from server

o Client waits 70 seconds — Attr changed, all Data blocks are discarded.

36

NFS Consistency: Reads
e Eg: Client cache has file A’s attributes and blocks 1, 2, 3

o Client opens A:

o Client reads block 1 => cache

o Client waits 70 seconds

o Client reads block 2 => cache

e Block 3 is changed on server

» Client reads block 3 => cache, get old value
o Client reads block 4 => fetch from server

e Client waits 70 seconds

o Client reads block 3 =>7

o Client reads block 1 =>7

37

NFS Consistency: Writes

o Writes: How does client update server?
o Files
Write-back from client cache to server every 30 seconds
Also, Flush (write all dirty data) on close() (AKA flush-on-close)
o Directories
Synchronously write to server (write through)

38

NFS Consistency: Writes

Example: Client X and Y have file A (blocks 1,2,3) cached
» Clients Xand Y open file A

o Client X writes to blocks 1 and 2

39

NFS Consistency: Writes

e Example: Client X and Y have file A (blocks 1,2,3) cached
» Clients Xand Y open file A
» Client X writes to blocks 1 and 2
o ClientY reads block 1 => cache

40

NFS Consistency: Writes

e Example: Client X and Y have file A (blocks 1,2,3) cached
Clients X and Y open file A
Client X writes to blocks 1 and 2
Client Y reads block 1 => cache

30 seconds later... — Data blocks from X are pushed to the server.

41

NFS Consistency: Writes

e Example: Client X and Y have file A (blocks 1,2,3) cached
» Clients Xand Y open file A
» Client X writes to blocks 1 and 2
o ClientY reads block 1 => cache

» 30 seconds later...
e Client Y reads block 2 => cache, get old value

42

33T
NFS Consistency: Writes 33
e Example: Client X and Y have file A (blocks 1,2,3) cached

» Clients Xand Y open file A

» Client X writes to blocks 1 and 2

o ClientY reads block 1 => cache

» 30 seconds later...

e Client Y reads block 2 => cache, get old value

« 40 seconds later... — Attr changed, all Data blocks are discardedon Y. |

43

NFS Consistency: Writes

e Example: Client X and Y have file A (blocks 1,2,3) cached
» Clients Xand Y open file A
» Client X writes to blocks 1 and 2
o ClientY reads block 1 => cache
» 30 seconds later...
e Client Y reads block 2 => cache, get old value
» 40 seconds later...
o Client Y reads block 1 => server

44

Conclusions

o Distributed file systems
Important for data sharing
Challenges: Fault tolerance, scalable performance, and consistency

o NFS: Popular distributed file system

Key features:
Stateless server, idempotent operations: Simplifies fault tolerance
Crashed server appears as slow server to clients

Client caches needed for scalable performance

Rules for invalidating cache entries and flushing data to server are not
straight-forward

Data consistency very hard to reason about 45

